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Restricted Kalman filtering: methodological issues

This chapter is concerned with some presumed new methods about

imposing linear restrictions in state space modeling. The plan I will follow

is this. In section 4.1, I propose an alternative restricted Kalman filtering that

is indicated to situations in which the linear restrictions are time-invariant

and the state vector follows a general random walk. In section 4.2, I present

another alternative restricted Kalman filtering under a reduced linear state

space model, which will be confronted with the previous augmented restricted

Kalman filtering from several standpoints. At last, section 4.3 deals with the

imposition of linear restrictions in the prediction of the state vector.

4.1
Random walk state vectors under time-invariant restrictions

In this section, the paradigm of augmenting the measurement equation,

in order to accomplish linear restrictions in state vector estimation, changes.

Actually, this brief change in course deserves some attention because it may

highlight a potential framework in restricted Kalman filtering.

The result of this section, the proof of which is still carried out by

elementary Hilbert space theory, is the following:

Theorem 5 If the linear state space model in (2-1) is such that ct = 0 and

Tt = Rt = I, then (i)Aα1 = q (with q deterministic) and (ii)AQtA
′ = 0 for all

t=1,2,. . . are sufficient to

Aat|j = q for all t, j = 1, 2, ... (4-1)

Proof : Fix t and j. Once again, denote by πS′ the linear orthogonal projection

onto S ′. Now observe that, from a trivial recursion on the state equation,

αt = α1 +
t−1∑
j=1

ηt−j. (4-2)

Pre-multiplying both sides of (4-2) by A implies

Aαt = Aα1 +
t−1∑
j=1

Aηt−j = q + 0 = q, (4-3)
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where the second equality comes from hypotheses (i) and (ii). Denoting the ith

row from A by Ai = [ci1 . . . cim], it follows that

Aiat|j = ci1at1|j + · · ·+ cimatm|j = ci1πS′(αt1) + · · ·+ cimπS′(αtm)

= πS′(ci1αt1 + · · ·+ cimαtm) = πS′(Aiαt) = πS′(qi)

= qi,

where the third, fifth and sixth equalities come respectively from the linearity

of πS′ , from (4-3), and from the fact that qi ∈ R(πS′) = S ′. Since t, j and i

were taken arbitrarily, the theorem is proved. ¤

I should make explicit some practical gains from this last proposition, ap-

plicable to models in which the state vector evolves as (possibly heteroscedas-

tic) random walks. The first bonus is that there is no need to increase the

dimension of the measurement equation any longer. The second is that, by

imposing the enunciated restrictions on the initial state vector and on the

covariance matrices of the error terms from the state equation, maximum like-

lihood estimation can be sharply enhanced whenever some of the unknown

parameters belong to those matrices. The third advantage is that the restric-

tions are satisfied by any type of state estimation, whether it is a prediction,

updating or smoothing.

4.2
Reduced restricted Kalman filtering

4.2.1
Motivation

In dealing with a linear regression model under linear restrictions, there

are two ways of estimation. Actually, both prove to be numerically equivalent

and are known by the name of restricted least squares. The first way was

already revisited in section 3.3 (cf. expressions in (3-15)), while the second is

implemented by rewriting a reduced model with transformed data and then

applying usual OLS estimation to the transformed data (cf. Davidson and

MacKinnon, 1993).

My aim in this section is to propose a restricted Kalman filtering under

a reduced modeling framework. While the usual restricted Kalman filtering by

augmentation discussed so far can be viewed as a generalization of the first

way to impose linear restrictions in a static linear regression model, the new

approach to be now developed, in turn, resembles the second. One feature to

be listed among others is that, even though both approaches of restricted least
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squares produce exactly the same result, the two restricted Kalman filtering

(the augmented and the reduced) do not always result in the same estimated

state vectors.

4.2.2
The method

In the remaining of this section 4.2, consider the measurement equation

in (2-1), the restrictions in (2-5) and the following

Assumption 7 The (possibly random) vector qt = (qt1, . . . , qtk)
′ is lin-

early predeterminate to 1, Y1, . . . Yt, for all t = 1, 2, . . . ; that is, qti ∈
span{1, Y11, . . . , Y1p, . . . , Yt1, . . . , Ytp}, for all i = 1, . . . , k and t = 1, 2, . . . .

The basic perspective behind the alternative restricted Kalman filtering

is much the same as that of the reduced modeling in linear regression under

linear restrictions: some state coordinates are rewritten as an affine function of

the others and the result is appropriately placed in the measurement equation.

The method :

Let t be an arbitrary time index.

1. Without any loss of generality write the linear restrictions in (2-5) as

At,1αt,1 + At,2αt,2 = [At,1 At,2]
(
α′t,1, α

′
t,2

)′
= qt, (4-4)

where At,1 is a k × k full rank matrix.

2. Solve (4-4) for αt,1 which should result in

αt,1 = A−1
t,1 qt − A−1

t,1At,2αt,2. (4-5)

3. Take (4-5) and put it in the measurement equation of the model in (2-1)

- from which we drop dt without loosing generality at all - aiming to

obtain

Yt = Zt,1αt,1 + Zt,2αt,2 + εt

= Zt,1

(
A−1

t,1 qt − A−1
t,1At,2αt,2

)
+ Zt,2αt,2 + εt

= Zt,1A
−1
t,1 qt − Zt,1A

−1
t,1At,2αt,2 + Zt,2αt,2 + εt

⇒ Y ∗
t ≡ Yt − Zt,1A

−1
t,1 qt =

(
Zt,2 − Zt,1A

−1
t,1At,2

)
αt,2 + εt

≡ Z∗
t,1αt,2 + εt.

4. Now, postulate a transition equation for the unrestricted state vector

αt,2. This equation leads to the following reduced linear state space model
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when it is put together with the measurement equation derived in the

last step:

Y ∗
t = Z∗

t,2αt,2 + εt , εt ∼ (0, Ht)

αt+1,2 = Tt,2αt,2 + ct,2 + Rt,2ηt,2 , ηt,2 ∼ (0, Qt,2)

α1,2 ∼ (a1,2, P1,2).

(4-6)

5. For the reduced model in (4-6), apply the usual Kalman filtering to obtain

at,2|j and Pt,2|j, for all j ≥ t.

6. Reconstitute the estimate at,1|j and its mean square error matrix Pt,1|j
by means of the affine relation given in (4-5):

at,1|j = A−1
t,1 qt − A−1

t,1At,2at,2|j
Pt,1|j = (A−1

t,1At,2)Pt,2|j(A
−1
t,1At,2)

′.
(4-7)

The above algorithm deserves some qualification. First, I must say that

the approach is not completely new, since a particular case was conveniently

used in Doran and Rambaldi (1997); what I am doing here is to put it in a

more general framework. In addition, observe that j does have to be greater

than or equal to t due to steps 5 and 6 (cf. Assumption 7). Another aspect is

that the specification for the state equation in step 4 could be extracted from

the complete state equation in (2-1), but if one does not want to think or worry

about a full transition system, then one could concentrate only in modeling

the block αt,2.

4.2.3
Reducing versus augmenting

Among the advantages of the reduced model approach over the aug-

mented model, I cite:

– Mathematical consistency : Once the state equation is chosen after the

reducing task, the method avoids any risk of obtaining measurement

and state equations theoretically inconsistent with each other.

– Computational efficiency : While the augmenting approach increases the

dimension of the practical problem (indeed, the length of the measure-

ment vectors increases from p to p + k!), the reduced model approach

goes in an opposite direction by not altering the size of the measurement

equation and shortening the size of the state equation (from m to m−k).

In other words, the augmenting approach “augments” the dimensions of

the practical problem while the reduced model approach “reduces” them.
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Caṕıtulo 4. Restricted Kalman filtering: methodological issues 35

– Model selection: The reduced model approach enables one to investigate

the plausibility of the assumed linear restrictions by using information

criteria (e.g. AIC and BIC). The competing model would be the

unrestricted one as given by (2-1), the (quasi) likelihood function of

which is surely comparable with that one from the restricted model in

equations (4-6).

Stepping further towards the comparison between the reducing and the

augmenting approaches, I present two results. Both are related to the aug-

mented model suggested in Theorem 1, and reveal that, for certain types of

state restrictions, it is much less flexible. The first proposition concerns limi-

tations on the state equation. Note that the first three conditions listed below

are quite general, since they are verified for several state space specifications

(e.g. zero-mean initial state vectors, whatever diffuse or non-diffuse) and for

many types of linear restrictions (e.g., all the deterministic ones):

Proposition 1 Suppose the partition in (4-4) is such that At,1 ≡ A1. Also,

admit the following conditions:

(i) Tt = diag (Tt,1, Tt,2), where Tt,1 is k × k.

(ii)
(
A−1

1 At,2Tt,2 − Tt,1A
−1
1 At,2

)
E (αt,2) = 0.

(iii) E (qt) = E (qt+1) = q̄.

Then, (i), (ii) and (iii) are sufficient for Tt,1 = Ik×k. Now, suppose (i), (ii) and

(iii) valid for all t ≥ 1 and consider the additional conditions:

(iv) ∀t ≥ 1 : At,2 ≡ A2, such that A2 has null kernel.

(v) ∀t ≥ 1 : qt ≡ q (possibly random).

Now, (i) to (v) are sufficient for Tt = Im×m.

Proof : For ease of notation, set ct = 0 and Rt = I in the augmented version

of model (2-1). From (4-5) and from condition (i), I have

A−1
1 qt+1 − A−1

1 At,2Tt,2αt,2 − A−1
1 At,2ηt,2 = Tt,1A

−1
1 qt − Tt,1A

−1
1 At,2αt,2 + ηt,1,

which is equivalent to

A−1
1 qt+1−Tt,1A

−1
1 qt =

(
A−1

1 At,2Tt,2 − Tt,1A
−1
1 At,2

)
αt,2+ηt,1+A−1

1 At,2ηt,2. (4-8)

Taking expectations on both sides of (4-8) and using conditions (ii) and (iii),

I arrive at
(I − Tt,1) A−1

1 q̄ = 0. (4-9)

From (4-9), I necessarily have Tt,1 = Ik×k. Finally, under (i), (ii) and (iii) valid

for all t ≥ 1, the conditions (iv) and (v) imply Tt,2 = I(m−k)×(m−k) (indeed:

get A2αt,2 = q − A1αt,1 from (4-4), pre-multiply this latter identity by a left

inverse of A2, and recall that affine functions of random walks are also random

walks). ¤
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It becomes clear from Proposition 1 that, if one chooses the augmenting

approach for dealing with important types of restrictions, there would be no

possibility left but a random walk evolution for at least a block of the state

vector.

The second proposition is stated below. Its condition (vii), as one can

directly see, is a quite natural set-up, since this avoids some pathological

behaviors from the measurement equation, such as non-ergodic stationarity:

Proposition 2 Suppose conditions (i), (ii) and (iii) of Proposition 1 are valid

for all t ≥ 1, as well as (iv) and (v), with q degenerated. Also assume that:

(vi) ∀t ≥ 1 : Qt ≡ diag (σ2
t1, . . . , σ

2
tm).

(vii)∀t ≥ 1 and ∀i = 1, . . . ,m : σ2
1i = · · · = σ2

ti = 0 ⇒ V ar (α1i) = 0.

Then, Qt = Om×m for all t ≥ 1.

Proof : Take an arbitrary t ≥ 1. From (i) to (v), the decomposition in (4-

4) collapses to A1αt+1,1 + A2αt+1,2 = q. This implies rank (V (αt+1)) ≤
m − k. But, as Ts = I for all s = 1 . . . t (cf. Proposition 1), I must have

max {rank (P1) , rank (Q1) , . . . , rank (Qt)} ≤ m − k. Then, using (vi), there

exist i1, . . . , ik ∈ {1, . . . , m} such σ2
s ij

= 0 for all s = 1, . . . , t and j = 1, . . . , k.

Conveniently rearranging αt+1, I get a partition
(
α∗′t+1,1, α

∗′
t+1,2

)′
such that

V ar
(
α∗t+1,1

)
= Ok×k (cf. Proposition 1 again and condition (vii)). Than,

Ok×k = V ar (q∗) = V ar
(
A∗

1α
∗
t+1,1 + A∗

2α
∗
t+1,2

)
= A∗

2V ar
(
α∗t+1,2

)
A∗′

2 . (4-10)

From (4-10) I finally obtain Q∗
s,2 = O(m−k)×(m−k) for all s = 1, . . . t. ¤

This last result rules out any possibility of non-degenerated state vectors

under contemporaneously uncorrelated errors ηt1, . . . , ηtm. This limitation, as

the previously raised from Proposition 1, surely does not arise under the

reducing approach.

4.2.4
Geometrical considerations

Let me now grasp some intuitive insight from the described method and

therefore geometrically understand what this alternative restricted Kalman

filtering, as well as the previous one by augmentation, is in fact “doing” to the

state vector.

I in the first place defend that one could work in an equivalent way with

the model

DBD
PUC-Rio - Certificação Digital Nº 0410307/CA
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Yt = Z∗
t,2αt,2 + d∗t + εt , εt ∼ (0, Ht)

αt+1,2 = Tt,2αt,2 + ct,2 + Rt,2ηt,2 , ηt,2 ∼ (0, Qt,2)

α1,2 ∼ (a1,2, P1,2),

(4-11)

where d∗t ≡ Zt,1A
−1
t,1 qt, since (4-6) and (4-11) are equivalent linear state

space representations. Indeed, by Assumption 7, d∗t just defined is neces-

sarily deterministic - or linearly predeterminate to Y1, . . . , Yt. So the sets

{1, Y11, . . . , Y1p . . . , Yj1, . . . , Yjp} and {1, Y ∗
11, . . . , Y

∗
1p . . . , Y ∗

j1, . . . , Y
∗
jp} produce

the same univariate innovations in L2(Ω,F ,P), which implies they span the

same subspace. Therefore, the Kalman filtering (updating or smoothing equa-

tions) applied to (4-6) - or, as already argued, to (4-11) - is projecting each

αtj, j = k + 1, . . . , m onto span{1, Y11, . . . , Y1p, . . . , Yj1, . . . , Yjp}, j ≥ t, as it

is done in a regular state space estimation. But (4-6) - or equivalently (4-11)

- together with (4-5) make explicit the fact that αt,1 = (αt1, . . . , αtk)
′ can be

affinely extracted from αt,2 = (αt,k+1, . . . , αtm)′. Then, it becomes possible to

project each coordinate of αt,2 first and subsequently obtain the projections of

each coordinate of αt,1 using (4-7). In light of such considerations, one could

consider the reduced model approach as some kind of a “two-stage” state es-

timation.

Within the previous augmenting procedure, one in turn has to project

directly (by means of the Kalman equations applied to an augmented model)

each coordinate of the entire αt = (αt1, . . . , αtm)′ onto the bigger subspace

span{1, Y11, . . . , Y1p, q11, . . . , q1k, . . . , Yj1, . . . , Yjp, qj1, . . . , qjk} - strictly bigger if

at least one of the q1, . . . , qt is not linearly predeterminate to the measurements.

Figures 4.1 and 4.2 illustrate these highlighted geometrical differences.

Figura 4.1: Geometrical meaning of this section’s reduced model approach:
Here only part of the coordinates of the state vector are directly projected onto
the original spanned subspace. The other coordinates projections are obtained
by formula (4-7).

4.3
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Figura 4.2: Geometrical meaning of the previous augmenting approach: Here
each coordinate of the state vector is directly projected onto an augmented
subspace.

Predictions from a restricted state space model

The original proposal for adopting an augmented model, which I re-evoke

again in this section, does not, in general, guarantee that linear restrictions on

the state vector are carried over to the Kalman prediction equations (immediate

example: except for the local level model, there is no extension of Corollary 1 for

the prediction equations when one is dealing with any of the structural models

- cf. Harvey, 1989 - put in their respective state space forms). However, there is

one exception. This particular case is described by a state vector that follows

a possibly heteroscedastic random walk, and is considered in the following

Corollary 2 Under the conditions presented in Theorem 1, in addition to

(i) ct = 0 and (ii) Tt = Rt = I , it follows that

Atat+1|t = qt.

In this section I propose a simple strategy to further extend (namely,

for any type of linear state space model) the restricted Kalman filtering and

smoothing up to schemes aimed at prediction. As a matter of fact, what I seek

certainly differs from the method by Pandher (2002). In turn, the grounds of

my proposal are built up on the ideas of missing values state space treatment

and of the decomposition used in the second proof of Theorem 1 and in the

proof of Theorem 3.

Consider that one is willing to extrapolate the state vector and/or

the measurements up to h steps ahead in the future; that is, one wants to

obtain an+1|n, . . . , an+h|n and/or Ŷn+1|n, . . . , Ŷn+h|n. But, similarly to everything

that has been done so far in this Thesis, it is known a priori that, for all

j = 1, . . . , h, An+jαn+j = qn+j, where An+j is a k × m matrix and qt+j is
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a k × 1 (possibly random) vector; this knowledge is nothing more than the

confirmation that Assumption 1 is not confined to a particular time series of

size n. So the question is how to make an+1|n, . . . , an+h|n satisfy those same

theoretical constraints.

The proposed answer starts again from adopting an augmented model.

Then, the augmented version of (2-1) is rewritten in order to accomplish (or

recall to better say) the enunciated “future” restrictions:

(
Yt

qt

)
=

(
Zt

At

)
αt+

(
dt

0

)
+

(
εt

0

)
,

(
εt

0

)
∼

( (
0

0

)
,

(
Ht 0

0 0

) )

(4-12)

αt+1 = Ttαt + ct + Rtηt , ηt ∼ (0, Qt)

t = 1, . . . , n, n + 1, . . . , n + h.

Stepping ahead, observe now that the model in (4-12) can be decomposed in

a way that stresses that the researcher is actually dealing with the (possibly

multivariate) series

Y1, q1, Y2, q2, . . . , Yn, qn, Yn+1, qn+1, Yn+2, qn+2, . . . , Yn+h, qn+h, (4-13)

where there are missing measurements; Yn+1, Yn+2, . . . , Yn+h are obviously

absent up to time n. So the series in (4-13) presents blanks and should be

appropriately recast as

Y1, q1, Y2, q2, . . . , Yn, qn, , qn+1, , qn+2, . . . , , qn+h. (4-14)

The obtention of an+1|n, an+2|n, . . . , an+h|n is then almost equivalent to the

application of the Kalman smoothing to the “incomplete” series in (4-14),

using the following equivalent version of (4-12). The measurement equation is

defined by

Yt,i = Zt,iαt,i + dt,i + εt,i , εt,i ∼ (0, Ht,i).

When i = 1, nothing is changed from the measurement equation in (2-1) of

section 2.1. But for i = 2 we must have

Yt,2 = qt, Zt,2 = At, dt,2 = 0 and Ht,2 = 0.

Regarding the state equation, just notice that, for all t, αt,2 = αt,1 and

αt+1,1 = Ttαt,2+ct+Rtηt, ηt ∼ (0, Qt). The use of the word “almost” is justified

by the fact that the information from qn+1, . . . , qn+h does enter in the Kalman

estimation; so the result does not necessarily equal to an+1|n, an+2|n, . . . , an+h|n,

which theoretically use the information only up to qn. The modifications in
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the original Kalman equations due to missing observations are discussed in

Durbin and Koopman (2001), section 4.8. If the researcher wants to treat the

series in (4-14) under a univariate framework, he or she shall refer to section

6.4 of that same book - this univariate choice brings some gains exclusively

on the computational side since the whole vectors Yn+1, Yn+2, . . . , Yn+k are

lacking. Finally, notice that Theorem 1 is doing its job by guaranteeing that,

for all j = 1, . . . , h, An+jan+j|n = qn+j. For the reasons just explained in this

paragraph, “n + j|n” is an abuse of notation.

It is now time to harvest the resuming computational algorithm:

1. Decompose the model in (4-12) striving to get the series in (4-14).

2. Store the “new” observations while respecting the missing values posi-

tions.

3. Apply the Kalman smoothing equation to the stored observations, ap-

propriately modified to account for the missing values.

4. Take the smoothed states corresponding to the missing values positions

as the predicted state vectors under linear restrictions.
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